CML 3 Sample

1. _ A positive number is called n-primable if it is divisible by n and each of its digits is a one-digit prime number. How many 3 -primable positive integers are there that are less than 1000 ?
2. \qquad What is the sum of all positive integers q such that $\frac{n^{7}-n^{3}}{q}$ is an integer for every positive $\overline{\text { integer } n>2021}$?
3. \qquad What is the sum of the numbers less than 200 that have exactly 9 divisors?
4. \qquad The product of a set of positive integers is 144 . What is the least possible sum of this set of positive integers?
5. \qquad A, B, C and D are distinct positive integers such that the product $A B=60$, the product $\overline{C D=60}$ and $A-B=C+D$. What is the value of A ?
6. \qquad In base $b, 441_{b}$ is equal to n^{2} in base 10 , and 351_{b} is equal to $(n-2)^{2}$ in base 10 . What is the value of b, expressed in base 10 ?
7. \qquad What is the greatest prime factor of $12!+14$!? (Reminder: If n is a positive integer, then n ! stands for the product $1 \cdot 2 \cdot 3 \cdots \cdots(n-1) \cdot n$.)
8. \qquad The base-10 numbers 217 and 45 are multiplied. The product is then written in base-6. What is the units digit of the base-6 representation?
9. \qquad How many of the divisors of 8 ! are larger than 7 !?
10. \qquad Jan is thinking of a positive integer. Her integer has exactly 16 positive divisors, two of which are 12 and 15 . What is Jan's number?
